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Mymain area of research is symplectic geometry with an interest in low dimensional topology.
More precisely I am using tools from Floer theory and pseudo-holomorphic techniques to study symplectic
4-manifolds. The reason why I find this approach worth pursuing is that it can lead to a more “concrete”
description of several invariants of a given manifold, making them easier to compute in many cases.
Following this philosophy, together with Timothy Perutz, I am working towards a program that
aims to describe the Seiberg-Witten invariants of a Lefschetz fibration over the sphere in
terms of the geometry of the regular fiber, a surface, and the thimbles. As a necessary step
towards the end goal, I generalised an identification of the Floer homology of a surface twist by P. Seidel
[Sei96] to higher on higher dimensional manifolds [Ped24].
Central tools in my work are Seidel’s exact triangles for Lagrangian ([Sei03])

HF ∗(L0, L1) HF ∗(L0, τV L1) HF ∗(L0, V )⊗HF ∗(V,L1)σLag

µ2

(1)

and Fixed Point Floer homology ([Sei01],

HF−∗(ϕ) HF−∗(τV ϕ) HF ∗(ϕV,V )σFP

OC

(2)

whose maps will be explained later. While Lagrangian Floer (co)homology is widely known, due to its
involvement in the definition of the Fukaya category of a symplectic manifold M , Fixed Point Floer
homology (FP) is a lesser known generalization of Hamiltonian Floer homology. It was introduced by
Dostoglou and Salamon [DS94] as a way to count flat connections of the mapping torus of an automor-
phism of a nontrivial SO(3)-bundle over a surface Σ.
For a symplectomorphism ϕ ∶M →M (with non-degenerate fixed points) of a symplectic manifold (M,ω),
Dostoglou and Salamon defined HF∗(ϕ) as the Morse homology of a twisted loop space ofM . The Hamil-
tonian version can be retrieved by setting ϕ = Id in which case we compute the Morse cohomology of the
(untwisted) loop space of M (or a cover thereof) giving us the classical construction for HF ∗(M). For
the purpose of my work, it is better to use a more geometrical definition of FP Floer homology, intro-
duced by Seidel in his PhD thesis [Sei97]. Given a symplectomorphism ϕ ∶ (M,ω) → (M,ω) as above,
generators of CF∗(ϕ) are given by horizontal sections of the mapping torus π ∶Mϕ → S1 (horizontal with
respect to the distribution obtained from the 2-form ωϕ ∈ Ω2(Mϕ), induced by ω). On the other hand,
the differential is given by counting index 1 finite energy pseudo-holomorphic sections of the bundle

Id × π ∶ R ×Mϕ → R × S1

“connecting” two given horizontal sections of Mϕ. This change of perspective makes it easier to define
non-trivial maps between FP Floer homology groups, by counts of pseudo-holomorphic sections of certain
maps called Lefschetz fibrations: roughly speaking, proper maps π ∶ E2n+2 → Σ such that around each
critical points of π we can find holomorphic coordinates (z1, . . . , zn) satisfying

π(z1, . . . , zn) = z21 +⋯ + z2n.

The maps σLag, σFP are an example of maps constructed in this way.

1. My research program

My research work broadly aims to address the following situation: given a sequence of positive twists

ϕ = τVk
○ ⋯ ○ τV1 ∈MCG(Σ)

in the mapping class group of a surface Σ, there is a procedure to build a 4-dimensional Lefschetz fibration
over the (closed) disk D from it: the regular fiber is Σ, in the interior of D we have k critical points and
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the monodromy around ∂D is equal to ϕ. If ϕ happens to be a trivial word, i.e. isotopic to the identity,
we can then “cap off” the disk to obtain a Lefschetz fibration over the 2-sphere π ∶ X → S2 by gluing a
trivial fibration over another disk and identifying them along their boundaries. If the genus of Σ is at
least 2, this capping off procedure is essentially unique.
The total space X is a closed symplectic 4-manifold ([Gom04]), which then comes with a concrete de-
scription: the general fiber Σ and the positive factorization of the identity Id = τV1 ○ ⋯ ○ τVk

∈ MCG(Σ)
used to define the fibration over the disk. It is only natural to ask if we can read off the invariants
of X from such presentation.
There are a couple of positive answers to this question. The Euler characteristic, and more generally the
homology of X, is easily retrieved; I. Smith [Smi99] and B. Ozbagci [Ozb02] were able to compute the
signature of X using its description as a total space of a Lefschetz fibration. I am currently working
on computing an explicit formula for the Seiberg-Witten invariants of (X,ω) following this
philosophy. These invariants have a known interpretation in symplectic geometry, [Tau99][DS03] and
[Ush04], which we are implicitly using. They can be thought of as a map

SWX ∶ Spinc ≅H2(X;Z)→ Z

from the set of Spinc-structures of X to the integers, given by counting solutions to certain equations.
Taubes proved, in his seminal work [Tau99], that these invariants are equal to the Gromov-Witten
invariants Gr

Gr ∶H2(X;Z)→ Z (3)

given by assigning to each class α ∈ H2(X;Z) a certain weighted count of compact, pseudo-holomorphic
maps u ∶ Σ→X, whose fundamental class u∗[Σ] is equal to the Poincare’ dual of α.
This deep result provides the bridge from SWX to something that is amenable to Floer
theory, i.e. counting of pseudo-holomorphic curves in X.
In our setting, given a 4-dimensional Lefschetz fibration X → S2, by removing a little disk with no critical
values from the base we obtain a fibration π ∶X∣D →D with trivial monodromy. We then attach a suitable
cylindrical end to D and extending the fibration over it, to get a (homotopy equivalent) fibration π ∶X ′ →
C suitable for Floer’s techniques. We then focus on counting finite energy pseudo-holomorphic
sections s while keeping track of their relative homology class s∗[D,∂] ∈ H2(X,∂X), to get
an explicit formula for the map

Gr ∶H2(X;Z)sec → Z

restricted to the duals to homology classes represented by sections.
To obtain the formula we observed that by stretching C along concentric circles, we can decompose
our fibration π into a sequence of Lefschetz fibrations π1, . . . , πk over annuli A1, . . . ,Ak equipped with
cylindrical ends (the last one is a degenerate annulus with one end “pinched”, hence a disk) and whose
fibrations over them only have one critical point. Each pseudo-holomorphic section s then induces a
sequence of pseudo-holomorphic sections s1, . . . , sk with pairwise matching limits over the ends.

Figure 1: A Lefschetz fibration over the disk D (colored in grey) with 3 critical values and a section s (in
orange), is decomposed into 3 Lefschetz fibrations over annuli with corresponding sections s1, s2 and s3.

A gluing result then suggests that for “long enough” ends, there is a bijection between pseudo-hol.
sections of π ∶X ′ → C and sequences of pseudo-hol. sections over such annuli. “Detecting” the
latter can be done as follows: each Lefschetz fibration πi ∶ Xi → Ai corresponds to the fibration defining
the map

σFP
i ∶ CF (τVi−1⋯τV1)→ CF (τViτVi−1⋯τV1)

in (2). Hence, understanding such map algebraically means being able to count the sections si’s. To keep
track of the (relative) homology class of s, we exploit the topology of X∣D: its second homology group is
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generated by the fundamental class of the regular fiber and the relative classes of the thimbles ∆i over
ψi. If we want to recover the homology class of s, Fig. 1 suggests that s1 carries information about ∆1,
while s3 has to remember the intersection number with ∆3 and with the “tails” of the thimbles ∆1 and
∆2, since their vanishing paths traverse A3. To do so, we first constructed a local coefficients
system L for (2) which allows an (enriched) version of the map σFP

i to keep track of these
intersection numbers. We then use the chain homotopy between CF (τV ϕ;L) and Cone(OC;L),
provided by the triangle itself, to obtain a description of the “enriched” σFP

i in terms that are
easier to compute. Concretely, this is obtained by means of the mapping cone recognition lemma
(MCR) [OS05, Lemma 4.4], together with an explicit description of the maps in the exact triangle.

1.1 A geometric proof of the exactness of (1),(2)

To be able to apply the MCR lemma in order to prove exactness of the triangles with Z2 coefficients we
first described all the maps explicitly. In the Lagrangian case, as conjectured by P. Seidel, we are able to
show that the map λ is indeed the coproduct map obtained by counting sections of the trivial fibration
over the thrice-punctured disk. The proof that µ2 ○ λ ∼ 0 is based on a novel ideal not present
in the literature so far. The composition µ2 ○ λ counts index 0 sections over two thrice-punctured
disks glued along two of these boundary punctures. By seeing this configuration as one end of the moduli
space of annuli with varying conformal parameter and appropriate Lagrangian boundary conditions, we
defined a chain-homotopic map by means of counting the sections over the nodal configuration of the other
end, obtained as two disks, one of them carrying two boundary marked points, joined along an interior
cylindrical end. If we momentarily focus on the fibration over the disk with 3 marked points, it defines a
relative invariant of the mixed kind, (see [Sei01, page 14]) η ∈HF ∗(L0, L1)⊗HF ∗(L0, τV L1)⊗HF ∗(τ−1V ).
Therefore we can conclude µ2 ○ λ ∼ η(−, c) for a certain cocycle c ∈ CF ∗(τ−1V ), obtained by
counting rigid pseudo-holomorphic sections of the fibration over the disk with cylindrical
end at the origin. The null-homotopy is then a consequence of the following result

Theorem 1. ([Ped24, Theorem 1.4]) Let (Σ, ω) be a orientable surface with genus at least 2, let V be a
framed essential Lagrangian curve in it, then

[c] = 0 ∈HF ∗(τ±1V )

The techniques used to prove Theorem 1 can actually be used to prove much more than what strictly
needed, leading to this generalisation of a classic result of Seidel [Sei96] about twists on surfaces to a
much broader class of symplectic manifolds, for example Calabi-Yau and Fano manifolds:

Theorem 2. ([Ped24, Theorem 1.1]) Let (M,ω) be a closed w+-monotone symplectic manifold of dimen-
sion 2n ≥ 4 such that the symplectic class [ω] admits a rational representative. Let V1, . . . , Vm be pairwise
disjoint framed Lagrangian spheres and set τ ∶= τσ1

V1
⋯τσm

Vm
, where σi = ±1 for all i. Let C+ (resp. C−) be

the union of all Vi’s such that σi = +1 (resp. σi = −1), then

HF k(τ ; Λω) ≅ ⊕
j=k (mod 2)

Hj
Morse (M ∖C−,C+; Λω)

where the Floer cohomology of τ is Z2-graded and Λω is the Novikov field associated to the symplecto-
morphism τ ∶M →M .

Figure 2: A curve u going through V . The
purple area in the curve can be proved to be
arbitrarily big for long necks.

The proof of Theorem 2 (and with some minor modifications,
of Thm 1) is based on these three main ideas:

1. By carefully choosing the Hamiltonian perturbation,
the cochain groups CF ∗(τV ) and C∗Morse(M,V ) coin-
cides, “modulo” certain bad pseudo-holomorphic strips
that pass through V .

2. The more the tubular neighbourhood around
S(T ∗V ) is stretched, the more energy a bad tra-
jectory must have.

3. Thanks to a rather delicate energy filtration argument,
originally due to K. Ono [Ono95] in the Hamiltonian
case, one can show that bad trajectories do not count
towards the final result.

We conclude by remarking that Ghiggini and Spano [GS22] independently gave a rather explicit proof of
the exactness of (2).
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1.2 Constructing the local coefficient system and results in the Lagrangian case

To show how the local coefficients are built and work, we focus on the Lagrangian exact triangle (1). Fig.
(1), which motivates the program, has its Lagrangian counterpart in Fig. (3)

Figure 3

We count sections of a Lefschetz fibration
π ∶X →D over the (closed) disk with ap-
propriate Lagrangian boundary conditions by
decomposing X as a fiber sum of Xi →
Di’s, each of them containing a single critical
value. As before, each section si contributes
to the appropriate map σ in the Lagrangian
version of the exact triangle (2).
The local coefficient system for the La-
grangian exact triangle can be build as fol-
lows: choose a finite family C of curves in

F ≅ Σ. Let ker(incl.∗) ⊆ Z⟨C⟩
incl.∗ÐÐÐ→ H1(F ),

i.e. all the “combinations” of the curves in C that are nullhomologous in F . Given a point x on the
surface, we set

LCx ∶= Z[homZ (ker(incl.∗),Z)]
where Z[G] denotes the group ring of the group G. In practice, one has to use a little algebraic “trick”
in order to define the the local coefficient system for points lying on the curves in C. Given a Lefschetz
fibration π ∶ X → D with regular fiber F over a point in ∂D and critical values c1, . . . , ck, there is a
canonical family of curves we can use to construct our local coefficient system on F , i.e. by
taking the family {Vj}k of vanishing cycles in the reference fiber F . In Fig. (3), F1 is naturally equipped
with L{V1} while F2 comes together with L{V1,V2}.

Figure 4

Briefly, the action of the Floer differential with these local coefficients
is given by adding the contribution of the homomorphism induced by
taking the intersection number with γ. In the situation of Fig. (4),

∂Floer(x) = y ⊗ T [γ⌢−]

where T is the formal variable in the group ring. Following what sug-
gested by Fig. (3), by setting Li−1

1 ∶= τVi−1⋯τV1L1, each section s and
si naturally contributes to the respective chain maps with local coefficients:

σ̃Lag
tot ∶ CF (L0, L1)→ CF (L0, τVk

Lk−1
1 ;L{Vj}k)

σ̃Lag
Vi
∶ CF (L0, L

i−1
1 ;L{Vj}i−11

)→ CF (L0, τViL
i−1
1 ;L{Vj}i).

(4)

The fact that the sections s, si “change” the local coefficient system in the target is a consequence of
the fact that over D1, s1 does not carry any intersection number on the incoming end and tracks the
intersection with ∆1, while s2 “carries” the information about the intersection with the tail of ∆1 and
with the new thimble ∆2. This is encoded algebraically by a map A, which we called the “addition”
map. A “adds” an element of LC with the contribution of a pseudo-holomorphic section of a Lefschetz
fibration with vanishing cycles {Vj} over a regular fiber to get an element of LC∪{Vj}.

Theorem 3 ([PP]). Let L0, L1 and V ∈ Σ be essential Lagrangians. Let LC be a local coefficient system
as defined above, then the following triangle is exact:

HF ∗(L0, L1;LC) HF ∗(L0, τV L1;LC) HF ∗(L0, V ;LC)⊗HF ∗(V,L1)σ̃Lag λ̃

µ̃2

. (5)

The map λ̃ is essentially the coproduct map, together with an identification induced by τ−1V . λ̃ and µ̃2

act on the local coefficient system in a analogous way as ∂Floer, by keeping track of intersection numbers

with appropriate paths. The map σ̃Lag is obtained from the map σ̃Lag
V in local coefficient by forgetting the

contribution of the intersection number with the thimble associated to V .

For example, in Fig. (3), the map σ̃Lag will record the section s2 together with the intersection number
with the thimble ∆1 extended along ψ′1, but not the intersection number of the thimble over ψ2.

The map σ̃Lag
V from (4) does not fit into the enriched triangle (5). The reason being that keeping
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track of the intersection number with the thimble (∆, V ) will make the compositions λ̃○ σ̃Lag
V or σ̃Lag

V ○ µ̃2

non-zero in (co)homology. This is not just a technicality but rather a consequence of the vanishing result
from [Sei03, Prop 2.13], which is crucial in proving the exactness of the triangle. In dimension 2, the
result is based on the fact that sections with opposite intersection number with V will “cancel” each
other.
To retrieve the information about the “full” map σ̃Lag

Vi
in (4), we use the mapping cone

recognition lemma to obtain an explicit identification

CF(L0, τViL
i−1
1 ;L{Vj}i) ≃ CF(Cone(µ̃2;L{Vj}i))

which can be used to prove our main result. Let V ∗i be the homomorphism on ker(Incl.∗) induced by
projecting on the Vi-factor.

Theorem 4 ([PP]). In the setting of the previous theorem, the map

σ̃Lag
Vi
∶ CF (L0, L

i−1
1 ;L{Vj}i−1)→ CF (L0, τViL

i−1
1 ;L{Vj}i)

≃Ð→ CF(Cone(µ̃2;L{Vj}i))

is chain-homotopic to the following map

CF(L0, L
i−1
1 ;L{Vj}i−1)→ CF(Cone(µ̃2;L{Vj}i))

x⊗ T [f] ↦ (λ̃wi , Ĩdwi + Ψ̃♡wi
)

where the maps are explicitly given. Here,

λ̃wi
(x⊗ T [f]) = ∑

u∈M△

0 ([u])
∑

y∈L0∩Vi

z∈Vi∩Li−1
1

∣M△
0 ([u])∣ ⋅ y ⊗ (A([f], u) ⋅ (T + T −1)V

∗

i )⊗ z

where M△([u]) is the 0-dimensional component of the moduli space of (pseudo-holomorphic) triangles
in Σ with sides lying on L0, L

i−1
1 and Vi and prescribed asymptotic conditions.

The second map acts as follows:
Ĩdwi
(x⊗ T [f]) = x⊗A([f],0)

namely, it is the “inclusion” of local coefficients LC → LC∪{Vi}, and finally the last map:

Ψ̃♡wi
(x⊗ T [f]) = ∑

w∈L0∩Li−1
1

u′∈M♡

0,par([u
′])

∣M♡
0,par([u′])∣ (w ⊗A([f], u′) ⋅ (T + T −1)V

∗

i )

whereM♡
0,par([u′]) is the moduli space of parametric “pseudo-hearts”, i.e.

pseudo-holomorphic maps whose domain is the degenerate annulus on the
right and prescribed Lagrangian boundary conditions. The parameter is
given by the relative position of the two boundary marked points as in
[Liu20, Fig. 10, top left side].

As suggested by Fig. (3) for k = 2, the section s is decomposed in a sequence of sections s1, . . . , sk, each

of them contributing to the relevant map σ̃Lag
i . By iterating the cone construction as in [Kea14,

Prop 6.3] for each index i in CF (L0, τViL
i−1
1 ;L{Vj}i), we obtain a chain homotopy between the

(total) section counting map

σ̃Lag
tot ∶ CF (L0, L1)→ CF (L0, τVk

Lk−1
1 ;L{Vj}k))

and a map into a rather big chain complex generated by the iterated cone which can be
made totally explicit. All the elementary pieces of such map are variations of the ones appearing in
our theorem above, and therefore can be computed explicitly in terms of the geometry of the general
fiber F and the thimbles.
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1.3 The fixed point case

We are currently working on the enriched version of the exact triangle for FP Floer homology (2) and
what is the correct framework to iterate it. An easy adaptation of the reasoning done for the
Lagrangian case gives a fully geometric proof of the exactness of (2). As for the other case, the
neck-stretching argument from [Ped24] is a crucial ingredient for that.
Since the Lefschetz fibration defining σLag naturally sits inside the one defining σFP , lo-
cal coefficients should be defined in the same way as in the Lagrangian case to ensure
compatibility.

Figure 5: The darker disk (DLag) naturally sits inside the lighter one (DFP ) and after stretching the latter, we
obtain the decomposition for the Lagrangian case.

The addition map to add the contribution of each section should respect this compatibility
too, “forcing” it to only keep track of the portion of the section over DLag in the appropriate relative
homology group. This is not necessarily a restriction for our purposes, since the total fibration XDFP →
DFP deformation retracts to XDLag →DLag

2. Future directions

We believe that our machinery should carry over to the quilted setting of Wehrheim and
Woodward [WW10]. This is a crucial step for two reasons: in order to extend our approach to a general
element of H2(X;Z), we might need to work with the so-called Hilbert relative scheme Xr(π) associated
to the fibration π [DS03]. This construction has the property of transforming a r-multisection of X into
a section of Xr(π), but monodromies there are fibered twists rather than honest twists, requiring the
quilted package. With these formulas in hand, a completely explicit description of the SW
invariants of a symplectic 4-manifold in terms of the positive factorization of the identity
and the geometry of the general fiber should be achievable. Such formula could give some
kind of explicit restriction or conditions on whether a 2nd-degree homology class in X admits a pseudo-
holomorphic representative.
Another consequence of working in this more general context would be that the quilted
framework could make the proof of the following conjecture by P. Seidel within reach.

Conjecture. ([Sei01, Conj. 6.1]) Let ϕ be the global monodromy of an exact Lefschetz fibration π ∶X →
D, then there is a long exact sequence

HF ∗(ϕ,+) H∗(X;Z2) HH∗(A,A) . (6)

where HH∗(A,A) is the Hochschild cohomology of the Fukaya-Seidel category of π, A. HF ∗(ϕ,+) is a
version of FP Floer cohomology for manifolds with boundary.

To prove that, it might be advantageous to use the Lagrangian Floer interpretation of the Fixed Point
Floer cohomology groups as HF ∗(∆, (Id × ϕ)∆), where ∆ is the diagonal in F− × F . In this scenario,
(Id × τV ) is a fibered twist, making the quilted technology necessary.
My work in [Ped24] also offers potential future research directions: there is an obvious next step in
generalizing the isomorphism to composition of Dehn twists along not necessarily disjoint spheres, which
could be achieved with a perturbation scheme similar to the one studied in [Eft04], and then using virtual
techniques to prove the result for general symplectic manifolds. Another future goal inspired by my
previous work is to explore whether neck-stretching arguments can be applied to study more
general symplectomorphisms in higher dimensions: to this end, the multiple cut/neck-stretching
technology developed by Venugopalan and Woodward [VW22] could be an interesting tool to explore. It
allows for stretching along certain families of hypersurfaces, giving rise to a decomposition of the original
symplectic manifold into pieces in which the Floer homology of such automorphism could be easier to
understand. This can lead to some insights into the Fixed point homology of the symplectomorphism on
the original manifold.
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